National Repository of Grey Literature 22 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Plasmachemical deposition and characterization of hexamethyldiloxane thin layers
Blahová, Lucie ; doc. Mgr. Vít Kudrle. Ph.D. (referee) ; Krčma, František (advisor)
Thin films have been used to modify surface properties of various materials for many years. Plasma Enhanced Chemical Vapor Deposition (PECVD) is one of the possible methods for their preparation and this technique is applied in this work as well. An organosilicone – hexamethyldisiloxane – is used as precursor. Thin films are created on the surface of the substrate using mixture of precursor and oxygen in radiofrequently excited capacitively coupled plasma. The aim of the thesis is to find the optimal deposition conditions for production of transparent thin layers with good barrier capabilities, low oxygen transmission rate especially. Thin film depositions were realized for different compositions of the deposition mixture in continuous and pulsed mode of plasma with varying supplied power and duty cycle values. The deposition process itself was monitored in situ by optical emission spectroscopy. Thin film coatings were analyzed to determine their physical chemical properties (infrared spectroscopy, surface energy) and barrier properties. Using optical emission spectroscopy, important particles were identified in the deposition plasma. Vibrational, rotational and electron temperatures were determined from relative intensities of chosen fragments. Composition of thin films was studied by infrared spectroscopy. The best results of oxygen transmission rate were achieved with layers prepared from deposition mixture with high oxygen content. It was possible to improve barrier properties by performing deposition in pulsed plasma mode with 20–30% duty cycle. In this diploma thesis, optimal deposition conditions of thin films from hexamethyldisiloxane with low oxygen transmission rate were determined. It is possible to use these results in practical applications, such as corrosion inhibitors for archaeological objects. Optionally, they can be used in various industry branches where it is desirable and feasible to prevent oxygen access to the material by deposition of barrier coatings.
Spectroscopy of VOC degradation by surface discharge catalyzed by TiO2
Veverková, Radka ; Slavíček, Pavel (referee) ; Kozáková, Zdenka (advisor)
Bachelor thesis is focused on the study of degradation of volatile organic compounds in surface discharge catalysed by TiO2. Volatile organic compounds are dangerous both for human beings and the environment. Therefore it is necessary to eliminate volatile organic compounds. Plasma technology is one of the options how to reach their efficient removal. The experiment was carried out in the plasma reactor with electrodes for surface discharge. One or two layers of TiO2 catalyst were deposited on one of the electrodes. Nitrogen was used as a carrier gas and it was mixed with air before entering the reactor. The radiation emitted by the discharge during the degradation of VOC was transmitted via optical fibre to the optical emission spectrometer Jobin Yvon TRIAX 550. Toluene, hexane, cyklohexane and xylene were used as model VOCs. During the experiment the impact of input power on catalysed or non-catalysed degradation of VOC by the discharge has been monitored. Using optical emission spectrometry it is possible to determine some important parameters of surface discharge, such as rotation and vibration temperature. The values were determined for each measurement in the range from 650 to 1050 K for rotation temperature and from 1600 to 1950 K for vibration temperature. The average error of determination was 100 K for rotation temperature and 120 K for vibration temperature. It was found, that the catalyst is without effect on the rotation and vibration temperature. In contrast, change of discharge input power significantly influenced both rotation and vibration temperature. Significantly different values of rotation and vibration temperature were obtained in the presence of particular compound for lower input power, while these values were similar for higher input power. Further, the spectral bands of nitrogen, oxygen and NO were identified from emission spectra. The obtained results may be used as a fundament for further study of volatile organic compounds decomposition in surface discharge.
Study of plasmachemical reduction of corrosive layers on bronze
Miková, Petra ; Selucká, Alena (referee) ; Krčma, František (advisor)
One of the important stages of the human history is certainly Bronze Age, on our territory dated 1900 - 800 BC. At that times, it was produced many objects of bronze, such as swords, spears, daggers, ornaments, jewelry. These artifacts are now found by archaeologists in excavations around the whole world. During the years there was an exposure to various types of substances and the environment and result in extensive corrosion of the used materials. To better understand the culture and traditions of our ancestors, it is necessary to carefully eliminate the corrosion and thorough inspection of these subjects. In this work, we consider the model corrosion layers removal by reduction in low-temperature hydrogen plasma. Plasma chemical reduction method was developed during the eighties years of last century and currently is further rapidly improved. Unfortunately, the process mechanism is not yet precisely known. Preparation of model corrosion layers were as follows: bronze blocks (weight approximately 80 g) were sharpend by electrical grinding machine (used paper 280 and then 600). Thus treated samples were rinsed in ethanol, dryed by hot dryer and stored in plastic bags. A Petri dish was placed at the bottom of the desiccator and it was poured by 20 ml of concentrated hydrochloric acid. Above the bowl has punched ceramic grid, on which the samples were placed. Closed desiccator was placed in darkness at the ambient laboratory temperature. To accelerate the samples corrosion process in a desiccator, the samples were sprinkled with acid. Plasma chemical treatment was carried out in a cylindrical reactor of quartz glass with outer copper electrodes. The RF (13.54 MHz) capacitivelly coupled plasma was used for the samples treatment. For each sample have been selected specific conditions: power (50 - 300 W), pulse (duty cycle of 10 – 25 %) or continuous mode. The optical emission spectroscopy monitored dependence of OH- intensity during the reduction. The decrease to the 1/10 of the maximum value leads to end the experiment. Based on this criterion, the treatment time of samples was in the range of 30 - 80 minutes. Corrosion has been removed from 7 samples. All the samples were covered by corrosion deep green color with a clearly visible crystalline structure before their inserting into the reactor. After the treatment, the color was dark black, and after leaving the air began to surface green, in some samples was observed in white and yellow tint. Surface top layer was removed on samples 1 and 5, where spontaneous dropout was reached. The pulse mode with duty cycle of 10 % and the powers of 200 and 300 W were applied for these two samples. The surface layer of samples treated with pulsed mode of 25 % was easily removable by spatula. The work demonstrated the applicability of hydrogen RF plasma in pulsed mode for the corrosion removal from bronze samples. The further work will be focused on the optimal treatment conditions search.
Measure of atomic nitrogen concentration in the nitrogen post-discharge
Josiek, Stanislav ; doc.Mgr.Pavel Slavíček, Ph.D. (referee) ; Mazánková, Věra (advisor)
Clean post-discharge nitrogen plasma and nitrogen plasma with different traces have been focus of scientists for more than 50 years and there were published many articles on theme active discharge, post-discharge, processes and reactions. It is possible to create kinetic models from all these information and then calculate concentrations of elements in atomic form. This diploma thesis is focused on measuring of concentration of atomic nitrogen for different conditions (decay time, pressure, admixture). The titration method by nitric oxide in post-discharge was used to determinate of concentration of atomic nitrogen. All experimental results were obtained by the optical emission spectroscopy. Optical emission spectra were taken in the range of 300-600 nm. DC discharge was created in a quartz tube in a flowing regime. The flowing regime was chosen for this experiment because of better time resolution of decay time, order in milliseconds. Decay time was in the range of 16 – 82 ms for individual experiments. Nitrogen flow was 400 mln/min. Nitrogen oxide flow was in the range of 0-10 mln/min and it was added at the selected post-discharge time. Trace of methane was 0,006 % of the whole volume. Total gas pressure was set on values from 500 to 4000 Pa. The output of discharge was set on constant value of current 150 mA and the output has changed according to the amount of pressure. Nitrogen first positive, second positive and first negative spectral systems, NO spectral system and NO2* spectral system were recognized in all measured spectra. Absolute concentration of atomic nitrogen was specified by the method of titration of NO. Traces of methane increase dissociation of molecular nitrogen and therefore increase the concentration of atomic nitrogen. This thesis brings new results into longtime research of moon Titan and new results into study of processes in nitrogen-methane plasma.
Diagnostics of thin layer deposition using dimethylphenylsilane monomer
Procházka, Michal ; Kudrle, Vít (referee) ; Krčma, František (advisor)
The aim of this thesis is a study of processes during organosilicone thin film deposition via plasma polymerization. Recently, thin films are the most expanding way of surface modification of materials. They are used as protective coatings, functional layers, they can increase or decrease adhesion to different compounds (e.g. water), or just improve mechanical properties of bulk materials. Plasma polymers, which are not known so long, are a modern trend in evolution of thin film deposition. They have perfect adhesion to the substrate and they are highly resistant against most of chemical compounds. Their structure is quite different from the structure of classical polymers. Recently, organosilicon compounds are used as precursors for plasma polymers because silicon built in the structure of plasma polymer allows thin film deposition on glass substrate and the organic part of monomer gives us infinite possibilities of modification. In our case dimethylphenylsilane (DMPS) was used as a monomer. Various RF low pressure discharges were used during this study. Plasma diagnostic was performed by optical emission spectroscopy of inductive coupled plasma. This method allows us to determine plasma composition during the deposition process. Thus we can predict the composition of deposited thin film according to input parameters. From relative populations of fragments we are able to find out optimal conditions for deposition process. We can also calculate temperature of particles in plasma which gives us some information about particle energies. The first part of the study deals with the identification of particles (fragments) created by fragmentation of monomer in plasma environment. We successfully identified hydrogen atomic lines of Balmer’s series in the spectra. Many rotational lines of hydrogen molecule were also detected. Atomic carbon occurred only in small amount. Much more carbon was detected in the form of CH radical. We also found some weak lines connected to atomic silicon. When we used a mixture of DMPS and oxygen, OH radical and O2+ were present in spectra. Next, optimal settings of deposition were determined for particular fragments from relative intensities of these fragments in optical emission spectra. Using this information we are able to set up the process to deposit thin films of desired composition and properties. We calculated electron temperature from intensities of hydrogen lines in Balmer’s series. Rotational temperature was obtained from CH radical intensity. Unfortunately, there was no convenient radical from which intensity we would be able to calculate vibrational temperature. All results and information obtained during the research can be used in industrial plasma polymerization processes and development of new coatings and functional thin films. Other studies on DMPS or similar monomer may also be realized to get more knowledge about processes in plasma and this thesis could serve as a basis for further research. Moreover, this study is a part of an international project. The aim of this project is to study processes during plasma polymerization both theoretically and practically. Once finished, the project and its results will be presented in scientific literature and at international conferences.
Diagnostics of plasma generated in the atmosphere simulating Mars
Fojtíková, Nikola ; RNDr. Martin Ferus, Ph.D., (referee) ; Kozáková, Zdenka (advisor)
The aim of the diploma thesis was the diagnostics of plasma generated in the atmosphere simulating conditions on Mars. This diploma thesis is focused on the simulation of Mars’ atmosphere at atmospheric pressure and normal laboratory temperature. Due to the similar conditions of Mars' atmosphere with Earth, this planet has been explored in the past as well as up to now. Mars' atmosphere is composed mostly of carbon dioxide, which makes up more than 90 % of Mars' atmosphere. A glow discharge generated in a special reactor at atmospheric pressure at a flow of pure CO2 was used to simulate the atmosphere of Mars. Part of the measurement was performed only in pure CO2 with changing current of 20, 25, 30, 35 and 40 mA. Part of the measurements was focused on the study of the effect of the addition of various gases, such as nitrogen, hydrogen and methane, at changes in their flow rates of 1, 2, 3, 4 and 5 sccm. The products formed in the special reactor were analysed using a mass spectrometer with proton ionization and with a flight time analyser. Optical emission spectrometry was used for plasma diagnostics and composition. Mainly simple aliphatic hydrocarbons, alcohols, aldehydes, and ketones were detected. With increasing flow rates of the individual gases, more complex aromatic compounds with higher molecular weights were formed. Corresponding mass and optical emission spectra were measured simultaneously.
Analytical methods for verifying the authenticity of the wine
Flegr, Šimon ; Štursa, Václav (referee) ; Diviš, Pavel (advisor)
This bachelor’s thesis deals with the authenticity of wine, focusing on the authenticity of geographic origin. The theoretical part of this work summarises the main components of wine and their changes during the production proces. Control techniques are introduced, including the ones used by the goverment’s control bureau (SZPI) and other documented methods. Areas recognised for growing wine are described, including the Morava area in Czechia and its imminent adjacent areas in Austria and Slovakia. Experimental part deals with the trace amount analysis of selected elements and phenolic compounds. The element analysis was conducted using mass spectrometry and optical emission spectrometry, whilst the phenolic compounds were separated using high-pressure liquid chromatography with spectrophotometric detection. The results were analysed using discrimination analysis to separate groups with different areas of origin, with the aid of data from former research.
Study of Chemical Processes in Titan Atmosphere Initiated by Discharge in Electrode Configuration Like Gliding Arc Discharge
Töröková, Lucie ; Zahoranová, Anna (referee) ; Žabka,, Ján (referee) ; Krčma, František (advisor)
The aim of this work is the study of plasma processes and the synthesis of organic compounds due to electric discharge generated in gas mixture corresponding to the composition of the atmosphere of Saturn's largest moon Titan. This study focuses on the mimic of Titan's atmosphere at atmospheric pressure and ambient laboratory temperature. The chemical composition of Titan's atmosphere is very similar to atmosphere of prehistoric Earth. Many articles have been published with theoretical model-research, and laboratory experiments are the pursuit of their interconnection. The main aim of thesis is the identification of synthesized gaseous organic, amino, imino and cyano compounds by use to various analytical methods such as the PTR-MS, FTIR and GC-MS. The OES and electric measurements were applied to the determination of selected electric discharge parameters. The gaseous products and radicals formed in an atmospheric discharge fed by different mixtures of N2:CH4 (0,5 up to 5 % of CH4) operated in a flowing regime at the total gas mixture flows from 50 to 200 sccm at different discharge currents from 15 up to 40 mA were determined. A part of experiments was carried out with admixtures of CO2 and hydrogen. This first part of results has been obtained using OES in dependence on the gas mixture composition and supplied power. The bands of the nitrogen second positive and the first negative systems, CN violet system and Swan system of C2 were recorded. Besides them, atomic lines H, H, and C (in the second order) were also observed. These spectra allowed calculation of rotational and vibrational temperatures. FTIR in situ analysis of the gaseous products showed presence of various nitrile compounds and hydrocarbons in all experiments. The HCN, C2H2, NH3 were the main products generated in our system. The dependences of their concentrations on various experimental parameters were measured. The other part of this work was devoted to estimate the influence of CO2 traces addition on the reactivity in the gaseous mixtures mentioned above. Besides the main products mentioned above, CO2 and CO were detected and also some more complicated oxygen molecules has been confirmed but not estimated because of FTIR spectra complexity. In the case of hydrogen traces addition into the reaction gas mixture, no other compounds were determined. Impurities of CO2 as well as hydrogen have a great positive influence on the production efficiency of the major generated compounds at all conditions. The more detailed gaseous products analyses were carried out using the in situ PTR-MS. A huge number of different molecular structures containing nitrile groups (–CN), amino groups (–NH2, –NH–, –N CH3CN > C2H5CN. Besides them, many other hydrocarbons and nitriles were detected. Presence of all compounds was studi
Study of post-discharge kinetic processes by titration methods
Josiek, Stanislav ; Kozáková, Zdenka (referee) ; Mazánková, Věra (advisor)
Many experimental and theoretical works on plasma post-discharges have been published during the last more than fifty years. A part of these works was focused in details on nitrogen discharges and post-discharges and kinetic processes in it. The aim of the presented bachelor`s thesis was to study kinetic processes in post-discharge in pure nitrogen and nitrogen contained methane traces. Atomic nitrogen concentration at different methane concentrations was measured by the nitrogen monoxide titration into the post-discharge. All experimental results were obtained by the optical emission spectroscopy. Optical emission spectra were taken in the range of 300-600 nm. DC discharge was created in a quartz tube in a flowing regime. The flowing regime was chosen for this experiment because of better time resolution of the post-discharge. Nitrogen flow was 400 mln/min. Nitrogen oxide flow was in the range of 0-10 mln/min and it was added at the selected post-discharge time. Experiments were carried out for pure nitrogen and for four different methane concentrations – 0.006, 0.013, 0.019 and 0.025 %. Total gas pressure of 1000 Pa, discharge current of 150 mA and voltage of 1110 V were constant during all these experiments. Nitrogen first positive, second positive and first negative spectral systems, NO spectral system and NO2* spectral system were recognized in all measured spectra. The atomic nitrogen concentration was determined using NO and NO2* intensities, and it was increased by the increase of methane concentration. On the other hand, the nitrogen molecular ion emission was strongly quenched even at very low concentration of methane. From this point of view, this thesis is innovative and brings new results into the worldwide research.
Studying the authenticity of coffee of various geographical origins
Flegr, Šimon ; Pořízka, Jaromír (referee) ; Diviš, Pavel (advisor)
This diploma thesis researches coffee authenticity problematice, mainly focusing on the authenticity of geographic origin. In the theoretical part of this work, botanical classification is described as well as production technology and processes. The work also includes chemical composition of coffee, describing the major components and changes during production phases. It describes major production areas of the world, in terms of general description and brief history. Problematics with coffee fraud and its identification are also described. Theoretical part also includes general geological description of 17 studied coffee growing regions. Experimental part is devoted to trace amount analysis of selected elements and volatile compounds. The element analysis was conducted using mass spectrometry or optical emission spectrometry, volatile compounds were determined using gas chromatography combined with mass spectrometry detection. Results were statistically described and analyzed, resulting in several discrimination models based on geographic origin.

National Repository of Grey Literature : 22 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.